metodos de interpolacion
En análisis numérico, la interpolación polinómica (o polinomial) es una técnica de interpolación de un conjunto de datos o de una función por un polinomio. Es decir, dado cierto número de puntos obtenidos por muestreo o a partir de un experimento se pretende encontrar un polinomio que pase por todos los puntos.
Motivación del polinomio interpolador
La interpolación polinómica es un método usado para conocer, de un modo aproximado, los valores que toma cierta función de la cual solo se conoce su imagen en un número finito de abscisas. A menudo, ni siquiera se conocerá la expresión de la función y solo se dispondrá de los valores que toma para dichas abscisas. El objetivo será hallar un polinomio que cumpla lo antes mencionado y que permita hallar aproximaciones de otros valores desconocidos para la función con una precisión deseable fijada. Por ello, para cada polinomio interpolador se dispondrá de una fórmula del error de interpolación que permitirá ajustar la precisión del polinomio. Es fácil demostrar, usando el determinante de Vandermonde, que por n puntos, con la única condición de que para cada x haya una sola y, siempre se puede encontrar un polinomio de grado menor o igual a (n-1) que pase por los n puntos.un ejemplo mas clara para poder entender esté metodo es con un video, como por ejemplo:
Comentarios
Publicar un comentario